Kun Shuai 1,2,3Yuanan Zhao 1,2,3,*Xiaofeng Liu 1,2,3,*Xiangkun Lin 1,2,3[ ... ]Jianda Shao 1,3,9
Author Affiliations
Abstract
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
3 Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai, China
4 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
5 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
6 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
7 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
8 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
9 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
Multilayer dielectric gratings (MLDGs) are crucial for pulse compression in picosecond–petawatt laser systems. Bulged nodular defects, embedded in coating stacks during multilayer deposition, influence the lithographic process and performance of the final MLDG products. In this study, the integration of nanosecond laser conditioning (NLC) into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films (MLDFs) and final grating products to improve laser-induced damage performance. The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance, which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold (nanosecond-LIDT) of the unconditioned MLDGs. Furthermore, the picosecond-LIDT of the nodular ejection pit conditioned on the MLDFs was approximately 40% higher than that of the nodular defects, and the loss of the grating structure surrounding the nodular defects was avoided. Therefore, NLC is an effective strategy for improving the laser damage resistance of MLDGs.
laser-induced damage threshold multilayer dielectric gratings nanosecond laser conditioning nodular defects picosecond–petawatt laser systems 
High Power Laser Science and Engineering
2023, 11(6): 06000e89
赵元安 1,2,3连亚飞 1,3李婷 1,3彭小聪 1,3[ ... ]邵建达 1,2,3
作者单位
摘要
1 中国科学院 上海光学精密机械研究所 薄膜光学实验室,上海 201800
2 中国科学院大学 材料与光电研究中心,北京 100049
3 中国科学院 强激光材料重点实验室,上海 201800
KDP类晶体是唯一可以满足ICF激光驱动装置通光口径的非线性光学晶体材料。该类晶体采用水溶液生长法生长,易于产生宏观包裹体和微观晶格缺陷,在高功率激光辐照下晶体内部易产生高密度pinpoint损伤现象,这与其他方法生长的晶体只是受限于光学加工的表面损伤问题相比具有明显不同。KDP类晶体内部的缺陷或前驱体诱导激光损伤与晶体切向、激光波长及偏振方向等密切相关,使得应用于ICF激光驱动器中不同光学功能的、来源于同一晶坯的不同晶体元件也表现出损伤性能的差异性,因此其损伤机理非常复杂,迫切需要认识该类晶体的激光损伤机理问题。回顾了上海光学精密机械研究所联合福建物质结构研究所、山东大学等晶体研制单位联合开展的关于KDP类晶体激光诱导损伤特性的研究工作,进行了用于光开关、倍频以及混频等功能的KDP和不同氘含量DKDP晶体的激光损伤研究,指导了晶体生长工艺优化和过程关键因素控制,并对仍存在的问题及解决方案进行了展望,对于高性能KDP类晶体的研制以及在高功率激光系统中的合理应用具有参考价值。
KDP类晶体 激光损伤 缺陷 激光损伤前驱体 热吸收 非线性吸收 激光预处理 KDP-family crystals laser induced damage defect precursor thermal absorption nonlinear absorption laser conditioning 
强激光与粒子束
2023, 35(7): 071001
胡晨璐 1,2,3李大伟 1,3,*刘晓凤 1,3李笑玲 1,2,3[ ... ]陶春先 5
作者单位
摘要
1 中国科学院上海光学精密机械研究所薄膜光学实验室,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
3 中国科学院强激光材料重点实验室,上海 201800
4 中国科学院大学杭州高等研究院,浙江 杭州 310024
5 上海理工大学光电信息与计算机工程学院,上海 200093
目前,高反射率反射镜在激光陀螺和引力波探测等领域中有着广泛的应用。但对于反射率为99.9%~99.99%的样品,现有测试手段存在一定局限性。搭建了基于分光光度法的反射率测量装置,采用双光路测量方法,通过测量参考信号和基准信号、参考信号和测试信号的差分信号来计算反射率。与绝对值较大的参考信号、基准信号和测试信号等相比,信号差值本身相对较小,因此可以充分利用锁相放大器的灵敏度来提高反射率的测量精确度。所介绍的测量方法的精确度可达10-5,与光腔衰荡法进行对比,测量误差在0.009%以下。所提方法用简单的装置就能达到较高的精确度,满足99.9%~99.99%反射率的精确测量需求。
测量 激光光学 高反射率 分光光度法 光学薄膜 锁相放大器 
中国激光
2023, 50(10): 1004002
崔云 1,2,*张革 1,2赵元安 1,2邵宇川 1,2[ ... ]邵建达 1,2,**
作者单位
摘要
1 中国科学院上海光学精密机械研究所薄膜光学实验室,上海 201800
2 中国科学院强激光材料重点实验室,上海 201800
激光系统用薄膜元件既要有优异的光学性能,又要有高的激光诱导损伤阈值(LIDT)。薄膜元件的基底表面上交替沉积有高低折射率材料,通过膜厚、折射率等参数的优化可实现所需的光学性能,但元件中存在的微缺陷(如膜料喷溅缺陷、基底缺陷等)是导致LIDT降低的重要原因。通过精准定位切割、三维重构的方法,表征膜料喷溅和基底抛光产生的微缺陷的形貌结构,并对其激光辐照前后的元素分布进行了分析。研究结果为镀制工艺、基底加工工艺的改进提供了参考。
薄膜 激光损伤 微缺陷 喷溅 基底抛光 
中国激光
2023, 50(2): 0203101
Author Affiliations
Abstract
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
2 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
3 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
4 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
5 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, China
6 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
7 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
Multilayer dielectric gratings typically remove multiple-grating pillars after picosecond laser irradiation; however, the dynamic formation process of the removal is still unclear. In this study, the damage morphologies of multilayer dielectric gratings induced by an 8.6-ps laser pulse were closely examined. The damage included the removal of a single grating pillar and consecutive adjacent grating pillars and did not involve the destruction of the internal high-reflection mirror structure. Comparative analysis of the two damage morphological characteristics indicated the removal of adjacent pillars was related to an impact process caused by the eruption of localized materials from the left-hand pillar, exerting impact pressure on its adjacent pillars and eventually resulting in multiple pillar removal. A finite-element strain model was used to calculate the stress distribution of the grating after impact. According to the electric field distribution, the eruptive pressure of the dielectric materials after ionization was also simulated. The results suggest that the eruptive pressure resulted in a stress concentration at the root of the adjacent pillar that was sufficient to cause damage, corresponding to the experimental removal of the adjacent pillar from the root. This study provides further understanding of the laser-induced damage behavior of grating pillars and some insights into reducing the undesirable damage process for practical applications.
grating pillar removal laser-induced damage multilayer dielectric gratings picosecond laser 
High Power Laser Science and Engineering
2022, 10(6): 06000e42
胡晨璐 1,2,3李大伟 1,2,*刘晓凤 1,2李笑玲 1,2[ ... ]邵建达 1,2,4
作者单位
摘要
1 中国科学院上海光学精密机械研究所薄膜光学实验室,上海 201800
2 中国科学院强激光材料重点实验室,上海 201800
3 中国科学院大学材料与光电研究中心,北京 100049
4 中国科学院大学杭州高等研究院,浙江 杭州 310024
提出了一种基于表面热透镜技术的热扩散率测量方法。利用脉冲泵浦光加热样品,热量沿膜层传导形成温度场,温升区域热膨胀形成表面热包,其对探测光具有调制作用,产生了表面热透镜效应。通过分析热透镜信号的相位与探测距离的关系,求出了对应泵浦光频率下的热扩散长度,进而求得热扩散率。测量了膜厚为150 nm的铬膜样品的热扩散率,所提方法的测量结果为36.9 mm2/s,与光热偏转法的测量误差仅为0.8%,与其他不同类型样品在两种方法下的测量结果也较为接近,证明了所提方法的有效性。相对于光热偏转法,所提方法具有装置简单、受环境影响较小等优点。
薄膜 激光光学 激光损伤 表面热透镜 热扩散率 
中国激光
2022, 49(21): 2103101
Mengxia Wang 1,2,3Hailong Qiu 3,8,*Tianwen Yang 3Zhengping Wang 4[ ... ]Jianda Shao 1,2,7,10,*
Author Affiliations
Abstract
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
4 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
5 Laboratory of High Power Fiber Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
6 College of Science, Shanghai University, Shanghai 200444, China
7 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
8 e-mail: qiu@tjut.edu.cn
9 e-mail: yazhao@siom.ac.cn
10 e-mail: jdshao@siom.ac.cn
1T-polytype tantalum disulfide (1T-TaS2), an emerging strongly correlated material, features a narrow bandgap of 0.2 eV, bridging the gap between zero-bandgap graphene and large-bandgap 2D nonlinear optical (NLO) materials. Combined with its intense light absorption, high carrier concentration, and high mobility, 1T-TaS2 shows considerable potential for applications in broadband optoelectronic devices. However, its NLO characteristics and related applications have rarely been explored. Here, 1T-TaS2 nanosheets are prepared by chemical vapor deposition. The ultrafast carrier dynamics in the 400–1100 nm range and broadband NLO performance in the 515–2500 nm range are systematically studied using femtosecond lasers. An obvious saturable absorption phenomenon is observed in the visible to IR range. The nonlinear absorption coefficient is measured to be -22.60±0.52 cm MW-1 under 1030 nm, which is larger than that of other typical 2D saturable absorber (SA) materials (graphene, black phosphorus, and MoS2) under similar experimental conditions. Based on these findings, using 1T-TaS2 as a new SA, passively Q-switched laser operations are successfully performed at 1.06, 1.34, and 1.94 μm. The results highlight the promise of 1T-TaS2 for broadband optical modulators and provide a potential candidate material system for mid-IR nonlinear optical applications.
Photonics Research
2022, 10(9): 2122
作者单位
摘要
1 中国科学院 上海光学精密机械研究所 薄膜光学实验室, 上海 201800
2 中国科学院 强激光材料重点实验室, 上海 201800
光学元件是各类激光系统不可或缺的光学功能实现部件,其性能决定了激光系统的输出能力和光束质量。光学元件的激光损伤问题从激光发明起就一直伴随着激光技术的发展,随着激光新技术的发展和激光新应用的牵引,激光的波段、脉冲宽度以及重复频率等参数不断拓宽,使得激光损伤问题更加复杂,但万变不离其宗,激光损伤问题的核心是光学元件或光学材料对激光的吸收机制问题。从激光与光学材料相互作用的基本原理出发,以惯性约束聚变(ICF)激光驱动器应用的典型光学材料和光学元件为研究对象,回顾了针对光学元件的激光损伤问题开展的科研工作,总结了在此期间形成的关键技术和里程碑进展,同时也对依然困扰该领域的几类光学元件存在的问题瓶颈以及进一步研究发展趋势进行了展望。
激光损伤 光学元件 高功率激光 吸收机制 微观缺陷 纳观尺度激光损伤前驱体 laser damage optics high power laser absorption mechanism micro-scale defects nanoscale laser damage precursors 
强激光与粒子束
2022, 34(1): 011004
Yun Cui 1,2,*Yuanan Zhao 1,2Ge Zhang 1,2Meiping Zhu 1,2[ ... ]Jianda Shao 1,2,4
Author Affiliations
Abstract
1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
4 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Different laminated structures of TiO2/SiO2 composite film were prepared via atomic layer deposition (ALD) on alumina substrates. The effect of the annealing temperature in the air on the surface morphologies, crystal structures, binding energies, and ingredient content of these films was investigated using X-ray diffraction, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. Results showed that the binding energy of Ti and Si increased with decrease of the Ti content, and the TiO2/SiO2 nanolaminated films exhibited a complex bonding structure. As the annealing temperature increased, the thickness of the nanolaminated films decreased, and the density and surface roughness increased. An increase in the crystallization temperature was proportional to the SiO2 content in TiO2/SiO2 composite film. The annealing temperature and thin thickness strongly affected the phase structure of the ALD TiO2 thin film. To be specific, the TiO2 thin film transformed into an anatase phase from an amorphous phase after an increase in the annealing temperature from 400°C to 550°C, and the TiO2 film exhibited an anatase phase until the annealing temperature reached 850°C, owing to its extremely small thickness. The annealing process caused the Al ions in the substrate to diffuse into the films and bond with O.
atomic layer deposition nanolaminated film annealing thin films 
Chinese Optics Letters
2021, 19(12): 121406
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
3 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan430074, China
4 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
In this study, a high-energy, temporally shaped picosecond ultraviolet (UV) laser running at 100 Hz is demonstrated, with its pulses boosted to 120 mJ by cascaded regenerative and double-pass amplifiers, resulting in a gain of more than 108. With precise manipulation and optimization, the amplified laser pulses were flat-top in the temporal and spatial domains to maintain high filling factors, which significantly improved the conversion efficiency of the subsequent third harmonic generation (THG). Finally, 91 mJ, 470 ps pulses were obtained at 355 nm, corresponding to a conversion efficiency as high as 76%, which, as far as we are aware of, is the highest THG efficiency for a high-repetition-rate picosecond laser. In addition, the energy stability of the UV laser is better than 1.07% (root mean square), which makes this laser an attractive source for a variety of fields including laser conditioning and micro-fabrication.
all-solid-state laser third harmonic generation ultraviolet laser 
High Power Laser Science and Engineering
2021, 9(3): 03000e38

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!